Revised Structure B. Tech 1st Year (Common) Department of Mechanical Engineering, UNSIET, Veer Bahadur Singh Purvanchal University Jaunpur, Uttar Pradesh

REVISED EVALUATION SCHEME & SYLLABUS

S. No	Course Code	Course Title]	Periods	Periods	Periods	Periods		Periods		Periods	Periods	Periods		Periods Eval Sche		Evaluation Scheme		ation ne S		valuation cheme		End Semest er	Total	Credits														
			L	Т	Р	С	TA	To	PS	ТЕ	Р																												
						T		tal			Ε																												
1	KCS101T/	Programming for Problem	3	0	0	30	20	50		100		150	3																										
	KME101T	Solving /Fundamentals of																																					
		Mechanical Engineering &																																					
		Mechatronics																																					
2	KCE151P/	Engineering Graphics &	0	1	2				50		50	100	1																										
	KWS151P	Design Lab/		-	-						20	- 0 0	-																										
		Mechanical Workshop Lab																																					

KME-101T	FUNDAMENTAL OF MECHANICAL	3L:0T:0P	3 Credits
КМЕ-201Т	ENGINEERING AND MECHATRONICS		

Unit	Topics	Lectures
Ι	Unit I: Introduction to Mechanics of Solid:	8
	Normal and shear Stress, strain, Hookes' law, Poisson's ratio, elastic constants and their	
	relationship, stress-strain diagram for ductile and brittle materials, factor of safety. Basic	
	Numerical problems.	
	Types of beams under various loads, Statically Determinate Beams, Shear force and	
	bending moment in beams, Shear force and bending moment diagrams, Relationships	
	between load, shear and bending moment. Basic	
	Numerical problems.	
II	Introduction to IC Engines and RAC:	10
	IC Engine: Basic Components, Construction and Working of Two stroke and four	
	stroke SI & CI engine, merits and demerits, scavenging process; Introduction to electric,	
	and hybrid electric vehicles.	
	Refrigeration: Its meaning and application, unit of refrigeration; Coefficient of	
	performance, methods of refrigeration, construction and working of domestic	
	refrigerator, concept of heat pump. Formula based numerical problems on cooling load.	
	Air-Conditioning: Its meaning and application, humidity, dry bulb, wet	
	bulb, and dew point temperatures, comfort conditions, construction and working of	
	window air conditioner.	

III	Introduction to Fluid Mechanics and Applications:	7
	Introduction: Introduction: Fluids properties, pressure, density, dynamic and kinematic	
	viscosity, specific gravity, Newtonian and Non-Newtonian fluid, Pascal's Law,	
	Continuity Equation, Bernaulli's Equation and its applications, Basic Numerical	
	problems.	
	Working principles of hydraulic turbines & pumps and their classifications,	
	hydraulic accumulators, hydraulic lift and their applications.	
IV	Measurements and Control System: Concept of Measurement, Error in	8
	measurements, Calibration, measurements of pressure, temperature, mass flow rate,	
	strain, force and torques; Concept of accuracy, precision and resolution, Basic	
	Numerical problems.	
	System of Geometric Limit, Fit, Tolerance and gauges, Basic Numerical problems.	
	Control System Concepts: Introduction to Control Systems, Elements of control	
	system, Basic of open and closed loop control with example.	
V	Introduction to Mechatronics: Evolution, Scope, Advantages and disadvantages of	10
	Mechatronics, Industrial applications of Mechatronics, Introduction to autotronics,	
	bionics, and avionics and their applications. Sensors and Transducers: Types of sensors,	
	types of transducers and their characteristics.	
	Overview of Mechanical Actuation System – Kinematic Chains, Cam, Train Ratchet	
	Mechanism, Gears and its type, Belt, Bearing,	
	Hydraulic and Pneumatic Actuation Systems: Overview: Pressure	
	Control Valves, Cylinders, Direction Control Valves, Rotary Actuators, Accumulators,	
	Amplifiers, and Pneumatic Sequencing Problems.	

Reference Books:

- 1. Basic Mechanical Engineering, G Shanmugam, S Ravindran, McGraw Hill
- 2. Basic Mechanical Engineering, M P Poonia and S C Sharma, Khanna Publishers
- 3. Mechatronics : Principles, Concepts and Applications, Nitaigour Mahalik, McGraw Hill
- 4. Mechatronics, As per AICTE: Integrated Mechanical Electronic Systems, K.P.Ramachandran, G.K. Vijayaraghavan, M.S.Balasundaram, Wiley India
- 5. Mechanical Measurements & Control, Dr. D. S. Kumar. Metropolitan Book Company
- 6. Fluid Mechanics and Hydraulic Machines, Mahesh Kumar, Pearson India

The stud	Blooms Taxonomy	
CO1	Understand the concept of stress and strain, factor of safety, beams	K2

CO2	Understand the basic component and working of internal combustion engines, electric and hybrid vehicles, refrigerator and heat pump, air- conditioning.	K2
CO3	Understand fluid properties, conservation laws, hydraulic machinery used in real life.	K2
CO4	Understand the working principle of different measuring instrument with the knowledge of accuracy, error and calibration, limit, fit, tolerance and control system.	K2
CO5	Understand concept of mechatronics with their advantages, scope and Industrial application, the different types of mechanical actuation system, the different types of hydraulic and pneumatic systems.	K2
CO6	Apply concepts of strength of material for safe design, refrigeration for calculation of COP, concepts of fluid mechanics in real life, concepts of measurements in production systems.	K3

KCE-151P	ENGINEERING GRAPHICS AND DESIGN LAB	0L:1T:2P	1 Credits
KCE-151P			

Unit	Topics	Lectur
		es
Ι	Introduction to Engineering Drawing, Orthographic Projections: Principles of	8
	Engineering Graphics and their significance, usage of Drawing instruments, lettering,	
	Scales –Plain and Diagonal Scales. Principles of Orthographic Projections – Conventions	
	- Projections of Points and Lines inclined to both planes; Projections of planes inclined	
	Planes – Auxiliary Planes	
	Projections and Sections of Regular Solids: Sections in lined to both the Planes -	8
II	Auxiliary Views; Simple annotation, dimensioning and scale. Floor plans the include:	
	windows, doors and fixtures such as WC, Both, sink, shower, etc. Prism, Cylinder,	
	Pyramid, Cone-Auxiliary Vies: Development of surfaces of Right Regular Solids -	
	Prism, Pyramid, Cylinder and Cone.	
III	Isometric Projections: Principles of Isometric projection – Isometric Scale, Isometric	8
	Views, Conventions; Isometric Views of lines, Planes Simple and compound Solids;	
	Conversion of Isometric Views to Orthographic Views and Vice- versa, Conversions.	

IV	Computer Graphics: Listing the computer technologies the impact on graphical communication, Demonstration knowledge of the theory of CAD software [such as: The Menu System, Tollbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects: Isometric Views of lines, Planes, Simple and compound Solids]; Set up of the drawing page and the printer, including scale settings, Setting up of units	8
	and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles:	
	Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to pater using the print command: orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned	
	surface; Drawing annotation, Computer-aided design (CAD) software modelling of parts and assemblies. Parametric and non- parametric solid, surface, and wireframe models. Part editing and two- dimensional documentation of models. Planar projection theory,	
	Spatial visualization exercises Dimensioning suidelines tolerancing techniques: dimensioning and scale multi views of dwelling	
V	Demonstration of a simple team design project. Geometry and topology of engineered	8
v	components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric	0
	dimensioning and tolerancing; Use of solid-modelling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink,	
	shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM).	
	Text Books:	

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R. (2014), Engineering Drawing, Charotar Publishing House.
- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, PearsonEducation
- 3. Agrawal B. & Agrawal C.M. (2012), Engineering Graphics, McGraw Publication
- 4. Engineering Graphics & Design, A.P. Gautam & Pradeep Jain, Khanna Publishing House
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering

Drawing, Scitech Publishers.(Corresponding set of) CAD Software Theory and User Manuals.

S. No.	Mechanical Workshop	Duration
1	Introduction to Mechanical workshop material, tools and machines	
	To study layout, safety measures and different engineering materials (mild steel, medium carbon steel, high carbon steel, high speed steel and cast iron etc) used in workshop.	2 Hours
	used in fitting, sheet metal and welding section.	5 Hours
	To determine the least count of vernier caliper, vernier height gauge, micrometer (Screw gauge) and take different reading over given metallic pieces using these instruments.	-
2	Machine shop	
	Demonstration of working, construction and accessories for Lathe machine Perform operations on Lathe - Facing, Plane Turning, step turning, taper turning, threading, knurling and parting.	3 Hours
3	Fitting shop	
	 Practice marking operations. Preparation of U or V -Shape Male Female Work piece which contains: Filing, Sawing, Drilling, Grinding. 	3 Hours
4	Carpentry Shop	
	Study of Carpentry Tools, Equipment and different joints.	
	Making of Cross Half lap joint, Half lap Dovetail joint and Mortise Tenon Joint	3 Hours
5	Welding Shop	
	Introduction to BI standards and reading of welding drawings.	
	Practice of Making following operations Butt Joint Lap Joint TIG Welding	6 Hours
	MIG Welding	
6	Moulding and Casting Shop	
	Introduction to Patterns, pattern allowances, ingredients of moulding sand and melting furnaces. Foundry tools and their purposes Demo of mould preparation and Aluminum casting	6 Hours
	Practice – Study and Preparation of Plastic mould	

7	CNC Shop			
	Study of main features and working parts of CNC machine and accessories			
	that can be used.	6 Hours		
	Perform different operations on metal components using any CNC machines			
8	To prepare a product using 3D printing	3 Hours		

Course Outcomes: At the end of this course students will demonstrate the ability to:

- 1. Understanding of the visual aspects of engineering design
- 2. Understanding of engineering graphics standards and solid modelling
- 3. Effective communication through graphics
- 4. Applying modern engineering tools necessary for engineering practice
- 5. Appling computer-aided geometric design
- 6. Analysis of Isometric views
- 7. Creating working drawings

KWS-151P	MECHANICAL WORKSHOP LAB	0L:1T:2P	1 Credit
KWS-251P			

SUGGESTIVE LIST OF EXPERIMENTS:

The students will be able to		Blooms Taxonomy
CO1	Use various engineering materials, tools, machines and measuring equipments.	К3
CO2	Perform machine operations in lathe and CNC machine.	K3
CO3	Perform manufacturing operations on components in fitting and carpentry shop.	К3
CO4	Perform operations in welding, moulding, casting and gas cutting.	К3
CO5	Fabricate a job by 3D printing manufacturing technique	К3

Reference Books:

- 1. Workshop Practice, H S Bawa, McGraw Hill
- 2. Mechanical Workshop Practice, K C John, PHI
- 3. Workshop Practice Vol 1, and Vol 2, by HazraChoudhary, Media promoters and Publications
- 4. CNC Fundamentals and Programming, By P. M. Agrawal, V. J. Patel, Charotar Publication.